Extensions 1→N→G→Q→1 with N=C2 and Q=C422S3

Direct product G=N×Q with N=C2 and Q=C422S3
dρLabelID
C2×C422S396C2xC4^2:2S3192,1031


Non-split extensions G=N.Q with N=C2 and Q=C422S3
extensionφ:Q→Aut NdρLabelID
C2.1(C422S3) = C42.282D6central extension (φ=1)96C2.1(C4^2:2S3)192,244
C2.2(C422S3) = C4×Dic3⋊C4central extension (φ=1)192C2.2(C4^2:2S3)192,490
C2.3(C422S3) = C426Dic3central extension (φ=1)192C2.3(C4^2:2S3)192,491
C2.4(C422S3) = C4×D6⋊C4central extension (φ=1)96C2.4(C4^2:2S3)192,497
C2.5(C422S3) = C3⋊(C428C4)central stem extension (φ=1)192C2.5(C4^2:2S3)192,209
C2.6(C422S3) = C3⋊(C425C4)central stem extension (φ=1)192C2.6(C4^2:2S3)192,210
C2.7(C422S3) = C6.(C4×D4)central stem extension (φ=1)192C2.7(C4^2:2S3)192,211
C2.8(C422S3) = C22.58(S3×D4)central stem extension (φ=1)96C2.8(C4^2:2S3)192,223
C2.9(C422S3) = D6⋊(C4⋊C4)central stem extension (φ=1)96C2.9(C4^2:2S3)192,226
C2.10(C422S3) = D6⋊C45C4central stem extension (φ=1)96C2.10(C4^2:2S3)192,228
C2.11(C422S3) = C42.243D6central stem extension (φ=1)96C2.11(C4^2:2S3)192,249
C2.12(C422S3) = C42.182D6central stem extension (φ=1)96C2.12(C4^2:2S3)192,264
C2.13(C422S3) = C42.185D6central stem extension (φ=1)96C2.13(C4^2:2S3)192,268
C2.14(C422S3) = (C2×C42).6S3central stem extension (φ=1)192C2.14(C4^2:2S3)192,492
C2.15(C422S3) = (C2×C42)⋊3S3central stem extension (φ=1)96C2.15(C4^2:2S3)192,499

׿
×
𝔽